Development of a High-Resolution Precipitation Climatological Dataset from the Climatology-Calibrated Precipitation Analysis (CCPA)

Yan Luo1,2, Yuejian Zhu1, and Dingchen Hou1

1 Environmental Modeling Center/NCEP/NWS/NOAA
2 I. M. Systems Group, INC. at EMC/NCEP

Acknowledgements

Bo Yang and Bo Cui

AMS 93rd Annual Meeting
27th Conference on Hydrology
6-10 January, 2013, Austin, TX
Introduction

- NCEP/EMC Climatology Calibrated Precipitation Analysis (over CONUS at 6h, ~5km resolution)
- Provides as a proxy of truth for precipitation forecast calibration and downscaling
- Focus of this work is to develop a dataset of precipitation climatology from CCPA
- The method of L-moments is applied
Background

What is CCPA?

- A dataset of precipitation analysis, over CONUS at 6h, ~5km resolution
- Statistically adjust Stage IV data at CPC analysis grid so their climatology is consistent with the CPC dataset, and then downscale back to the original Stage IV grid.

Advantages:
- Higher reliability of the CPC dataset, and
- Higher spatial and temporal resolution of the Stage IV dataset

Statistical adjustment — Linear regression: $\text{CPC} = a \cdot \text{ST4} + b$

Products:
- Operational since July 2010
- Twice daily
- Grids: HRAP (primary), and NDGD, 0.125, 0.5 and 1.0 degree resolutions (byproducts)
- Period: 2002~present
Motivation

Precipitation climatology products are desired to be extensively used for several studies on

- QPF/PQPF calibration
- Hydrological applications which include initiating regional/global hydrological forecast model
- Model forecast evaluation
- Generation of extreme forecast index (EFI) or anomaly forecast.
- Help to enhance the quality of the precipitation analysis
- Others
Methodology

- **Method of L-moments** (Hosking, 1990 and Hosking and Wallis, 1997)

- **Why L-moment method?**
 - Precipitation data is highly skewed
 - Only ten years of CCPA – maybe not sufficient data samples to construct climatology
 - Advantages of L-moments
 - Efficiency and robustness
 - Less affected by sample size

- **Assumption:** Precipitation estimates follow the **Gamma** distribution
 - References: Thom (1958), Friedman and Janes (1957), Barger et al. (1959), Greenwood and Durand (1960), Shenton and Bowman (1970)
Data sample collection and processing

CCPA at 1*1 degree and 24 hours accumulation

- Accumulate 6-hourly analysis into daily with 24 hours accumulation
- Period – 10 year (2002-2012)
- Domain – CONUS only
- Increase sample size by using
 - 5 points (neighborhood locations)
 - 5 days time window (T-2, T-1, T0, T+1 and T+2)
- Up to 250 (=10x5x5) samples in total for each day of the year and each grid point
Estimation Procedures

Steps to compute precipitation frequency curve (distribution):

1. L-moments and L-moment ratios (L-location, L-scale, L-skewness, and L-kurtosis) were computed for the CCPA sample data set

2. These ratios were used to find a set of Gamma distribution parameters, defining a single probability distribution function for each day of the year and each grid point over CONUS

3. Every 10 percentages of probability were calculated based on the Gamma parameters
L-moments and L-moment ratios
Estimation of Gamma parameters

Parameters:
- $\kappa > 0$ shape
- $\theta > 0$ scale

Mean:
- $E[X] = \kappa \theta$

Variance:
- $\text{Var}[X] = \kappa \theta^2$
Proposed climatology products

At 1*1 deg (lat/lon) over CONUS

- Daily mean and median
- Conditional daily mean and median (non-zero precipitation only; no rain events are excluded)
- Every daily 10 percentages of probability (i.e. 10 climatologically equally likely bins) for each grid point
- Climatological variances (for grid points, domains)
- Expand to finer spatial and temporal resolutions in the future
Results
Daily every ten percentages of probability
Daily every 10 percentages of probability at Point (37N, 77W)
Comparison of CDF

Daily Precipitation at Point (37N, 77W) January 1

Daily Precipitation at Point (37N, 77W) July 1
Comparison of monthly precipitation climatology

January - winter month

July - summer month

Unit: mm/month

(NOAA NCEP CPC CAMS_OPI original_version climatology Precipitation)
Summary

1. Daily precipitation climatology in CCPA
 - Calculated using the L-moment method with an assumption of a Gamma distribution for each day of the year and each 1*1 degree grid point over CONUS.
 - Provided reasonable fittings of data sample with Gamma distribution.
 - When summed daily data up to monthly, they are fairly close to CPC monthly climatology.

2. Future work:
 - Product expansion:
 - Domain: CONUS only -> other areas
 - Resolution:
 - Space: 1*1 deg lat x lon -> 5KM NDGD grid
 - Time: daily -> 6 hourly -> 3 hourly
Future Applications

- Amount of precipitation above climatology mean/median of ensemble mean/median

- Probabilistic anomaly forecast:
 - Probability of exceeding one standard deviation of climatology
 - Probability of exceeding two standard deviations of climatology
 - Probability of exceeding three standard deviations of climatology

- Verification
 - Probabilistic evaluation (GEFS standard package) should have precipitation evaluation